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Figure 1: Two agents navigating with space-time precision through a complex dynamic environment.

Abstract

This paper presents a real-time planning framework for multi-
character navigation that enables the use of multiple heterogeneous
problem domains of differing complexities for navigation in large,
complex, dynamic virtual environments. The original navigation
problem is decomposed into a set of smaller problems that are dis-
tributed across planning tasks working in these different domains.
An anytime dynamic planner is used to efficiently compute and re-
pair plans for each of these tasks, while using plans in one domain
to focus and accelerate searches in more complex domains. We
demonstrate the benefits of our framework by solving many chal-
lenging multi-agent scenarios in complex dynamic environments
requiring space-time precision and explicit coordination between
interacting agents, by accounting for dynamic information at all
stages of the decision-making process.
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1 Introduction

The next generation of interactive applications requires high fidelity
navigation of interacting autonomous agents in non-deterministic,
dynamic virtual worlds. The environment and agents are constantly
affected by unpredictable forces (e.g., human input), making it im-
possible to accurately extrapolate the future world state to make
optimal decisions. These complex domains require robust naviga-
tion algorithms that can handle partial and imperfect knowledge,
while still making decisions which satisfy space-time constraints.

Different situations require different granularity of control. An
open environment with no agents and static obstacles requires only
coarse-grained control while cluttered dynamic environments re-
quire fine-grained character control with careful planned decisions
that have spatial and temporal precision. Some situations (e.g., po-
tential deadlocks) may require explicit coordination between mul-
tiple agents.

The problem domain of interacting autonomous agents in dynamic
environments is extremely high-dimensional and continuous, with
infinite ways to interact with objects and other agents. Having a
rich action set, and a system that makes intelligent action choices,
facilitates robust, intelligent virtual characters, at the expense of in-
teractivity and scalability. Greatly simplifying the problem domain
yields interactive virtual worlds with hundreds and thousands of
agents that exhibit simple behavior. The ultimate, far-reaching goal
is still a considerable challenge: a real-time system for autonomous
character control that can handle many characters, without compro-
mising control fidelity.

Previous work simulates crowds by decoupling global naviga-
tion [Sung et al. 2005; Kallmann 2010] and local collision avoid-
ance [Pelechano et al. 2008], or demonstrates space-time planning
for global navigation for a single character [Levine et al. 2011],
while meeting real-time constraints. These approaches provide a
tradeoff between number of agents, control fidelity, and environ-
ment complexity. To our knowledge, no proposed technique effi-
ciently accounts for the dynamic nature of the environment at all
levels of the decision-making process.

This paper proposes a real-time planning framework for multi-
character navigation that uses multiple heterogeneous problem do-
mains of differing complexities for navigation in large, complex,



dynamic virtual environments. We define a set of problem domains
(spaces of decision-making) which differ in the complexity of their
state representations and the fidelity of agent control. These range
from a static navigation mesh domain which only accounts for static
objects in the environment, to a space-time domain that factors in
dynamic obstacles and other agents at much finer resolution. These
domains provide different trade-offs in performance and fidelity of
control, requiring a framework that efficiently works in multiple do-
mains by using plans in one domain to focus and accelerate searches
in more complex domains.

A global planning problem (start and goal configuration) is dynam-
ically decomposed into a set of smaller problem instances across
different domains, where an anytime dynamic planner is used to ef-
ficiently compute and repair plans for each of these problems. Plan-
ning tasks are connected by either using the computed path from
one domain to define a tunnel to focus searches, or using succes-
sive waypoints along the path as start and goal for a planning task
in another domain to reduce the search depth, thereby accelerat-
ing searches in more complex domains. Using our framework, we
demonstrate real-time character navigation for multiple agents in
large-scale, complex, dynamic environments, with precise control,
and little computational overhead.

2 Related Work

There is extensive research in multi-agent simulations with many
proposed techniques that differ in domain complexity and con-
trol fidelity. Global navigation approaches [Sung et al. 2005; Sud
et al. 2007; van den Berg et al. 2008b; Kallmann 2010] precom-
pute a roadmap of the global environment which is used for mak-
ing efficient navigation queries, but generally regard the environ-
ment to be static. Crowd approaches [Pelechano et al. 2008; Thal-
mann 2008] compromise on control fidelity in an effort to effi-
ciently simulate a large number of agents in real-time. Reactive
approaches [Reynolds 1987; Lamarche and Donikian 2004; Loscos
et al. 2003] avoid collisions with most imminent threats while pre-
dictive approaches [van den Berg et al. 2008a; Paris et al. 2007;
Kapadia et al. 2009] approximate the trajectories of neighboring
agents in choosing collision-free velocities. The work in [Singh
et al. 2011a] proposes a hybrid technique that combines reactive
rules, predictions, and planning for simulating crowds.

Planning based control of autonomous agents has demonstrated
control of single agents with large action spaces [Choi et al. 2003;
Fraichard 1999; Shapiro et al. 2007]. In an effort to scale to a large
number of agents, meet real-time constraints, and handle dynamic
environments, a large variety of methods [Pettré et al. 2008] have
been proposed. The complexity of the domain is made simpler [Lau
and Kuffner 2005; Lo and Zwicker 2008] to reduce the branching
factor of the search, or the horizon of the search is limited to a
fixed depth [Singh et al. 2011b; Choi et al. 2011]. Anytime plan-
ners [Likhachev et al. 2003; van den Berg et al. 2006] tradeoff opti-
mality to satisfy strict time constraints, and have been successfully
demonstrated for motion planning for a single character [Safonova
and Hodgins 2007]. Randomized planners [Hsu et al. 2002; Shapiro
et al. 2007] expand nodes in the search graph using sampling meth-
ods, greatly reducing search efforts to make it a feasible solution in
high-dimensional, continuous domains. The work in [Phillips and
Likhachev 2011] introduces safe time intervals as a novel abstrac-
tion of the temporal domain for planning in dynamic environments.

Hierarchical Planning. Hierarchical planners [Botea et al. 2004;
Bulitko et al. 2007; Holte et al. 1996] reduce the problem complex-
ity by precomputing abstractions in the state space, which can be
used to speed up plan efforts. Given a discrete environment rep-
resentation, neighboring states are first clustered together to pre-

compute abstractions for high-level graphs. Different algorithms
are proposed [Kring et al. 2010] which plan paths hierarchically
by planning at the top level first, then recursively planning more
detailed paths in the lower levels, using different methods [Lacaze
2002; Sturtevant and Geisberger 2010] to communicate informa-
tion across hierarchies. These include using the plans in high-
level graphs to compute heuristics for accelerating searches in low-
level graphs [Holte et al. 2005], using the waypoints as intermedi-
ate goals, or using the high-level path to define a tunnel [Gochev
et al. 2011] to focus the search in the low-level graph. The work
in [Arikan and Forsyth 2002] demonstrates the use of randomized
search in a hierarchy of motion graphs for interactive motion syn-
thesis.

Comparison to Prior Work. Our work builds on top of excel-
lent recent contributions [Levine et al. 2011; Lopez et al. 2012]
showcasing the use of space-time planning for global navigation
in dynamic environments, for a single agent. Levine et al. [2011]
uses parameterized locomotion controllers to efficiently reduce the
branching factor of the search and assumes that object motion
have known trajectories, thus mitigating the need for replanning.
Lopez et al. [2012] introduces a dynamic environment represen-
tation which is computed by deducing the evolution of the en-
vironment topology over time, thus enabling space-time collision
avoidance with no prior knowledge of how the world changes. In
contrast, we use multiple heterogeneous domains of control, and
present a planning-based control scheme that reuses plan efforts
across domains to demonstrate real-time, multi-character naviga-
tion, in constantly changing dynamic environments. Instead of au-
tomatically computing abstractions from a given representation, we
develop a set of heterogeneous domains with different state and ac-
tion representations that provide trade-offs in control fidelity and
computational performance, and investigate different methods of
communicating between domains to meet our application needs.

3 Overview

The problem domain of a planner determines its effectiveness in
solving a particular problem instance. A complex domain that ac-
counts for all environment factors such as dynamic environments
and other agents, and has a large branching factor in its action space
can solve more difficult problems, but at a larger cost overhead. A
simpler domain definition provides the benefit of computational ef-
ficiency while compromising on control fidelity. Our framework
enables the use of multiple heterogeneous domains of control, pro-
viding a balance between control fidelity and computational effi-
ciency, without compromising either.

A global problem instance P0 is dynamically decomposed into a
set of smaller problem instances {P

′
} across different planning

domains {Σi}. Section 4 describes the different domains, and Sec-
tion 5 describes the problem decomposition across domains. Each
problem instance P

′
is assigned a planning task T (P

′
), and an

anytime dynamic planner (Section 5.1) is used to efficiently com-
pute and repair plans for each of these tasks, while using plans in
one domain to focus and accelerate searches in more complex do-
mains. Plan efforts across domains are reused in two ways. The
computed path from one domain can be used to define a tunnel
which focuses the search, reducing its effective branching factor.
Each pair of successive waypoints along a path can also be used
as start,goal pairs for a planning task in another domain, thus re-
ducing the search depth. Both these methods are used to focus and
accelerate searches in more complex domains, providing real-time
efficiency without compromising on control fidelity. Section 6 de-
scribes the relationships between domains.



4 Planning Domains

A problem domain is defined as Σ = 〈S,A,c(s, s′),h(s, sgoal)〉 ,
where the state space S = {Sself × Senv × Sagents} includes the
internal state of the agent Sself , the representation of the environ-
ment Senv , and other agents Sagents. Sself may be modeled as a
simple particle with a collision radius. Senv can be an environment
triangulation with only static information or a uniform grid repre-
sentation with dynamic obstacles. Sagents is defined by the vicinity
within which neighboring agents are considered. Imminent threats
may be considered individually or just represented as a density dis-
tribution at far-away distances. The action space A defines the set
of all possible successors succ(s) and predecessors pred(s) at
each state, as shown in Equation 1. Here, δ(s, i) describes the ith

transition, and Φ(s, s′) is used to check if the transition from s to s′

is possible. The cost function c(s, s′) defines the cost of transition
from s to s′. The heuristic function h(s, sgoal) defines the estimate
cost of reaching a goal state.

succ(s) = {s+ δ(s, i)|Φ(s, s′) = TRUE ∀i = 1 to N} (1)

A problem definition P = 〈Σ, sstart, sgoal〉 describes the initial
configuration of the agent, the environment and other agents, along
with the desired goal configuration in a particular domain. Given
a problem definition P for domain Σ, a planner searches for a
sequence of transitions to generate a plan Π(Σ, sstart, sgoal) =
{si|si ∈ S(Σ)} that takes an agent from sstart to sgoal.

4.1 Multiple Domains of Control

We define 4 domains which provide a nice balance between global
static navigation and fine-grained space-time control of agents in
dynamic environments. Figure 2 illustrates the different domain
representations for a given environment.

Static Navigation Mesh Domain Σ1. This domain uses a triangu-
lated representation of free space and only considers static immov-
able geometry. Dynamic obstacles and agents are not considered in
this domain. The agent is modeled as a point mass, and valid tran-
sitions are between connected free spaces, represented as polygons.
The cost function is the straight line distance between the center
points of two free spaces. Additional connections are also precom-
puted (or manually annotated) to represent transitions such as jump-
ing with a higher cost definition. The heuristic function is the Eu-
clidean distance between a state and the goal. Searching for an op-
timal solution in this domain is very efficient and quickly provides
a global path for the agent to navigate. We use Recast [Mononen
2009] to precompute the navigation mesh for the static geometry in
the environment.

Dynamic Navigation Mesh Domain Σ2. This also uses triangu-
lations to represent free spaces and coarsely accounts for dynamic
properties of the environment to make a more informed decision at
the global planning layer. The work in [van Toll et al. 2012] em-
beds population density information in environment triangulations
to account for the movement of agents at the global planning layer.
We adopt a similar method by defining a time-varying density field
φ(t) which stores the density of moveable objects (agents and ob-
stacles) for each polygon in the triangulation at some point of time
t. φ(t0) represents the density of agents and obstacles currently
present in the polygon. The presence of objects and agents in poly-
gons at future timesteps can be estimated by querying their plans (if
available). The space-time positions of deterministic objects can be
accurately queried while the future positions of agents can be ap-
proximated based on their current computed paths, assuming that

they travel with constant speed along the path without deviation.
φ(t) contributes to the cost of selecting a waypoint in Σ2 during
planning. The resolution of the triangulation may be kept finer than
Σ1 to increase the resolution of the dynamic information in this do-
main. Hence, a set of global waypoints are chosen in this domain
which avoids crowded areas or other high cost regions.

Grid Domain Σ3. The grid domain discretizes the environment
into grid cells where a valid transition is considered between adja-
cent cells that are free (diagonal movement is allowed). An agent
is modeled as a point with a radius (orientation and agent speed is
not considered in this domain). This domain only accounts for the
current position of dynamic obstacles and agents, and cannot pre-
dict collisions in space-time. The cost and heuristic are distance
functions that measure the Eucledian distance between grid cells.

Space-Time Domain Σ4.
This domain models the
current state of an agent as
a space-time position with a
current velocity (x, v, t). The
figure alongside illustrates the
schematic illustration of the
state and action space in Σ4,
showing a valid transition,
and an invalid transition due
to a space-time collision with
a neighboring agent. The transition function δ(s, i) for Σ4 is
defined below:

δ(s, i) = {∆vi ·∆t|∆vi = (∆vi · sin ∆θi,∆vi · cos ∆θi)∀i}

where ∆v = {0,±a} is the possible speed changes and ∆θ =
{0,±π

8
,±π

4
,±π

2
} is the possible orientation changes the agent can

make from its current state. For example, ∆v = a,∆θ = π
8

pro-
duces a transition where the agent accelerates by a for the duration
of the timestep and rotates by π

8
. The bounds of ∆θ are limited be-

tween {−π
2
, π
2
} to limit the maximum rate of turning. Transitions

are also bound so that the speed and acceleration of an agent cannot
exceed a given threshold. Jumps are additionally modeled as a high
cost transition between two space-time points such that the region
between them may be occupied or untraversable for that time inter-
val. Inspite of the coarse discretization of ∆θ, the branching factor
of this domain is much higher, providing greater degree of control
fidelity with added computational overhead.

Σ4 accounts for all obstacles (static and dynamic) and other agents.
The traversability of a grid cell is queried in space-time by checking
to see if moveable obstacles and agents occupy that cell at that par-
ticular point of time, by using their published paths. For space-time
collision checks, only agents and obstacles that are within a certain
region from the agent, defined using a foveal angle intersection, are
considered. The cost and heuristic definitions have a great impact
on the performance in Σ4. We use an energy based cost formula-
tion that penalizes change in velocity with a non-zero cost for zero
velocity. Jump transitions incur a higher cost. The heuristic func-
tion penalizes states that are far away from sgoal in both space and
time. This is achieved using a weighted combination of a distance
metric and a penalty for a deviation of the current speed from the
speed estimate required to reach sgoal.

The domains described here are not a comprehensive set and only
serve to showcase the ability of our framework to use multiple het-
erogeneous domains of control in order to solve difficult problem
instances at a fraction of the computation cost. Our framework can
be easily extended to use other domain definitions (e.g., a footstep
domain), as described in Section 7.4.



(a) (b) (c) (d) (e)

Figure 2: (a) Problem definition with initial configuration of agent and environment. (b) Global plan in static navigation mesh domain Σ1

accounting for only static geometry. (c) Global plan in dynamic navigation mesh domain Σ2 accounting for cumulative effect of dynamic
objects. (d) Grid plan in Σ3. (e) Space-time plan in Σ4 that avoids dynamic threats and other agents.
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Figure 3: Expanded illustration of domain relationship shown in Figure 4(b). A global problem instance (start and goal state) is decomposed
into a set of smaller problem instances across multiple planning domains. Planning tasks T (Σ) are assigned to each of these problems and
scheduled using a dynamic priority scheme based on events from the environment and other tasks.

5 Problem Decomposition and Multi-Domain
Planning

Figure 4(a) illustrates the use of tunnels to connect each of the 4 do-
mains, ensuring that a complete path from the agents initial position
to its global target is computed at all levels. Figure 4(b) shows how
Σ2 and Σ3 are connected by using successive waypoints in Π(Σ2)
as start and goal for independent planning tasks in Σ3. This relation
between Σ2 and Σ3 allows finer-resolution plans being computed
between waypoints in an independent fashion. Limiting Σ3 (and
Σ4) to plan between waypoints instead of the global problem in-
stance ensures that the search horizon in these domains is never
too large, and that fine-grained space-time trajectories to the initial
waypoints are computed quickly. However, completeness and op-
timality guarantees are relaxed as Σ3, Σ4 never compute a single
path to the global target.

Figure 3 illustrates the different events that are sent between plan-
ning tasks to trigger plan refinement and updates for the domain
relationship in Figure 4(b). Σ1 is first used to compute a path
from sstart to sgoal, ignoring dynamic obstacles and other agents.
Π(Σ1) is used to accelerate computations in Σ2, which refines the
global path to factor in the distribution of dynamic objects in the
environment. Depending on the relationship between Σ2 and Σ3,

(a)

(b)

Figure 4: Relationship between domains. (a) Use of tunnels to
connect each of the 4 domains. (b) Use of successive waypoints in
Π(Σ2) as start, goal pairs to instantiate multiple planning tasks in
Σ3 and Σ4.

a single planning task or multiple independent planning tasks are
used in Σ3. Finally, the plan(s) of T (Σ3) are used to accelerate
searches in Σ4.

Changes in sstart and sgoal trigger plan updates in T (Σ1), which



are propagated through the task dependency chain. T (Σ2) monitors
plan changes in T (Σ1) as well as the cumulative effect of changes
in the environment to refine its path. Each T (Σ3) instance monitors
changes in the waypoints along Π(Σ2) to repair its solution, as well
as nearby changes in obstacle and agent position. Finally, T (Σ4)
monitors plan changes in T (Σ3) (which it depends on) and repairs
its solution to compute a space-time trajectory that avoids collisions
with static and dynamic obstacles, as well as other agents.

Events are triggered (outgoing edges) and monitored (incoming
edges) by tasks, creating a cyclic dependency between tasks, with
T0 (agent execution) monitoring changes in the plan produced by
the particular T (Σ4), which monitors the agents most imminent
global waypoint. Tasks that directly affect the agent’s next decision,
and tasks with currently invalid or sub-optimal solutions are given
higher priority. Given the maximum amount of time to deliberate
tmax, the agent pops one or more tasks that have highest priority
and divides the deliberation time across tasks (most imminent tasks
are allocated more time). Task priorities constantly change based
on events triggered by the environment and other tasks.

5.1 Planning Tasks

A task T (P ) is a planner which is responsible for generating and
maintaining a valid (and ideally optimal) solution for a particular
problem definition P = 〈Σ, sstart, sgoal〉 where sstart, sgoal, and
the search graph may be constantly changing. There are 4 types of
tasks, each of which solves a particular problem in the domains de-
scribed in Section 4. An additional task T0 is responsible for mov-
ing the agent along the path, while enforcing steering and collision
constraints.

Planning tasks constantly receive events from the environment and
other tasks, which render the current plan invalid, forcing it to con-
stantly update, refine, and repair its existing plan. For this purpose,
we use the Anytime Dynamic A* planner [Likhachev et al. 2005]
which combines the properties of incremental planners such as D*
Lite [Koenig and Likhachev 2002] and anytime algorithms such as
ARA* [Likhachev et al. 2003] to provide an algorithm which ef-
ficiently repairs its solutions to accommodate world changes and
agent movement, while providing solution guarantees under strict
time constraints. It performs repeated backward searches (from
goal to start), reusing previous search efforts to iteratively produce
solutions with improved bounds on optimality, like ARA*. This is
done using an inflation factor ε which effectively weighs the contri-
bution of the heuristic value in estimation of node costs, thus focus-
ing the search towards the goal, expanding fewer nodes to produce
ε sub-optimal solutions [Pearl 1984]. We provide an overview of
the algorithmic details of the planning task in Appendix B and re-
fer the readers to a comprehensive review of the AD* algorithm
here [Likhachev et al. 2005].

Plan Repair vs. Planning from Scratch. Note that there are often
instances during the simulation when the start and goal changes of
planning tasks change or when plans are invalidated due to obstacle
movement. Plans are always recomputed for goal changes. AD*
performs a backward search which allows it to efficiently update
the search graph to accommodate agent movement along the path.
For significant start changes or when the plan is invalidated due
to obstacle movement, the choice between replanning or repairing
a plan is a heuristic decision with tradeoffs in performance. Plan
repair may expand lesser nodes in the current iteration but bloat the
number of nodes visited, thus impacting performance in subsequent
plan iterations. It is not uncommon to plan from scratch during the
simulation. By resetting the inflation factor to a high value, we
can quickly compute a valid sub-optimal plan while meeting time
constraints and refine it in successive plan iterations.

5.2 Events and Task Priorities

Events are triggered and monitored by planning tasks in different
domains, as illustrated in Figure 3. Changes in start and goal, or en-
vironment changes may potentially invalidate current plans, requir-
ing plan refinement. Tasks that use tunnels to accelerate searches
in more complex domains, monitor plan changes in other tasks. Fi-
nally, tasks observe the optimality status of their own plans to deter-
mine their task priority. Appendix A describes the different events
in more detail.

The priority of a task p(Ta) determines the tasks that are picked
to be executed at every time step, with tasks having smallest p(Ta)
chosen for execution (p(Ta) is short for p(T (Σa))). Task T0, which
handles agent movement always has a priority of 1. Priority of other
tasks is calculated as follows:

p(Ta) =

{
1 if Ta = T0

µ(Ta,T0) · Ω(Ta) else
(2)

where µ(Ta,T0) is the number of edge traversals required to reach
T0 from Ta in the task dependency chain (Figure 3). Ω(Ta) denotes
the current state of the plan of Ta and is defined as follows:

Ω(Ta) =

 1 if SOLUTION INVALID
ε if plan inflation factor, ε > 1
∞ if plan inflation factor, ε = 1

(3)

where ε is the inflation factor used to determine the optimality
bounds of the current plan for that task. The agent pops one or
more tasks that have highest priority and divides the deliberation
time available across tasks, with execution-critical tasks receiving
more time. Tasks that have the same priority are ordered based on
task dependency. Hence, T0 is always executed at the end of every
update after all planning tasks have completed.

The overall framework enforces strict time constraints. Given an
allocated time to deliberate for each agent (computed based on de-
sired frame rate and number of agents), the time resource is dis-
tributed based on task priority. In the remote event that there is
no action to execute, the agent remains stationary (no impact on
frame-rate) for a few frames (fractions of a second) until a valid
plan is computed.

6 Relationship between Domains

The complexity of the planning problem increases exponentially
with increase in dimensionality of the search space – making the use
of high-dimensional domains nearly prohibitive for real-time appli-
cations. In order to make this problem tractable, planning tasks
must efficiently use plans in one domain to focus and accelerate
searches in more complex domains. Section 6.1 describes a method
for mapping a state from a low-dimensional domain to one or more
states in a higher dimensional domain. Sections 6.2 and 6.3 de-
scribe two ways in which plans in one domain can be used to focus
and accelerate searches in another domain.

6.1 Domain Mapping

We define a 1 : n function λ(s,Σ,Σ
′
) that allows us to maps states

in S(Σ) to one or more equivalent states in S(Σ
′
).

λ(s,Σ,Σ
′
) : s→ {s′|s′ ∈ S(Σ

′
) ∧ s ≡ s′} (4)



The mapping functions are defined specifically for each domain
pair. For example, λ(s,Σ1,Σ2) maps a polygon s ∈ S(Σ1) to
one or more polygons {s′|s′ ∈ S(Σ2)} such that s′ is spatially
contained in s. If the same triangulation is used for both Σ1 and
Σ2, then there exists a one-to-one mapping between states. Sim-
ilarly, λ(s,Σ2,Σ3) maps a polygon s ∈ S(Σ2) to multiple grid
cells {s′|s′ ∈ S(Σ3)} such that s′ is spatially contained in s.
λ(s,Σ3,Σ4) is defined as follows:

λ(s,Σ3,Σ4) : (x)→ {(x +W (∆x), t+W (∆t))} (5)

where W (∆) is a window function in the range [−∆,+∆]. The
choice of t is important in mapping Σ3 to Σ4. Since we use λ
to effectively map a plan Π(Σ3, sstart, sgoal) in Σ3 to a tunnel in
Σ4, we can exploit the path and the temporal constraints of sstart
and sgoal to define t for all states along the path. We do this by
calculating the total path length and the time to reach sgoal. This
allows us to compute the approximate time of reaching a state along
the path, assuming the agent is traveling at a constant speed along
the path.

6.2 Mapping Successive Waypoints to Independent
Planning Tasks.

Successive waypoints along the plan from one domain can be used
as start and goal for a planning task in another domain. This effec-
tively decomposes a planning problem into multiple independent
planning tasks, each with a significantly smaller search depth.

Consider a path Π(Σ2) = {si|si ∈ S(Σ2), ∀i ∈ (0, n)} of
length n. For each successive waypoint pair (si, si+1), we define
a planning problem Pi = 〈Σ3, sstart, sgoal〉 such that sstart =
λ(si,Σ2,Σ3) and sgoal = λ(si+1,Σ2,Σ3). Even though λ may
return multiple equivalent states, we choose only one candidate
state. For each problem definition Pi, we instantiate an indepen-
dent planning task T (Pi)which computes and maintains path from
si to si+1 in Σ3. Figure 4 illustrates this connection between Σ2

and Σ3.

6.3 Tunnels

The work in [Gochev et al. 2011] observes that a plan in a low
dimensional problem domain can often be exploited to greatly ac-
celerate high-dimensional complex planning problems by focusing
searches in the neighborhood of the low dimensional plan. They in-
troduce the concept of a tunnel τ(Σhd,Π(Σld), tw) as a sub graph
in the high dimensional space Σhd such that the distance of all states
in the tunnel from the low dimensional plan Π(Σld) is less than the
tunnel width tw. Based on their work, we use plans from one do-
main in order to accelerate searches in more complex domains with
much larger action spaces. A planner is input a low dimensional
plan Π(Σld) which is used to focus state transitions in the sub graph
defined by the tunnel τ(Σhd,Π(Σld), tw).

To check if a state s lies within a tunnel τ(Σhd,Π(Σld), tw)
without precomputing the tunnel itself, the low dimensional
plan Π(Σld) is first converted to a high dimensional plan
Π

′
(Σhd, sstart, sgoal) by mapping all states of Π to their corre-

sponding states in Π
′
, using the mapping function λ(s,Σld,Σhd)

as defined in Equation 4. Note that the resulting plan Π
′

may
have multiple possible trajectories from sstart to sgoal due to
the 1 : n mapping of λ. Next, we define a distance measure
d(s,Π(Σ)) which computes the distance of s from the path Π(Σ).
During a planning iteration, a state is generated if and only if
d(s,Π(Σhd)) ≤ tw. This is achieved by redefining the succ(s)

and pred(s) to only consider states that lie in the tunnel. Further-
more, node expansion can be prioritized to states that are closer to
the path by modifying the heuristic function as shown in below.

ht(s, sstart) = h(s, sstart) + |d(s,Π(Σ))| (6)

Note that the heuristic ht(s, sstart) is an estimate of the distance
from s to sstart since we use a backward search from sgoal to sstart
to accomodate start movement. For spatial domains Σ1, Σ2, and
Σ3, d(s,Π(Σ)) is the perpendicular distance between s and the line
segment connecting the two nearest states in Π(Σ). d(s,Π(Σ4))
will return a two-tuple value for spatial distance as well as temporal
distance.

TunnelChangeUpdate. When the tunnel changes, previously vis-
ited nodes that are no longer within the new tunnel are assigned
an infinite cost and the changes are propagated to their successors.
Also, their heuristic values are updated to reflect the new tunnel
distance using Equation 6, which re-prioritizes node expansion to
nodes that are closer to the new path. The tunnel width twis in-
versely proportional to the inflation factor ε. Thus, a high ε focuses
the search within a narrow tunnel, which is iteratively expanded
when ε is reduced to increase the breadth of the search. Due to the
extremely dynamic nature of the planning tasks, we find that a rea-
sonably narrow tunnel allows solutions to be returned very quickly
which can be improved, if time permits. If the tunnel is too narrow,
however, no plan maybe returned, requiring a replan in a wider tun-
nel. Appendix B, Alg 2 [22–30] provides the algorithmic details
to handle tunnel changes that are sent between planning tasks in
different domains.

Completeness and Optimality Guarantees. The use of tunnels
enables AD* to leverage plans across domains in order to expedite
searches in high-dimensional domains. However; by modifying the
definition of succ(s) and pred(s) to prune nodes that lie outside
the tunnel, we sacrifice the strict bounds on optimality provided by
AD*, as nodes that lie outside the tunnel may lead to a more opti-
mal solution. By iteratively expanding the tunnel width tw, when
the search is unsuccessful, we ensure that a solution will be found,
if one exists. For practical purposes, we find that a constantly dy-
namic world mitigates the need for strict optimality bounds as solu-
tions are constantly invalidated, before their use. In our experiments
(Section 7.1), we find that the computational benefit of using tun-
nels far outweighs its drawbacks, providing an exponential reduc-
tion in the nodes expanded, while still producing reasonable quality
solutions.

7 Results

7.1 Comparative Evaluation of Domain Relationships

We randomly generate 1000 scenarios of size 100m× 100m, with
random configurations of obstacles (both static and dynamic), start
state, and goal state and record the effective branching factor, num-
ber of nodes expanded, time to compute a plan, success rate, and
quality of the plans obtained. The effective branching factor is the
average number of successors that were generated over the course
of one search. Success rate is the ratio of the number of scenarios
for which a collision-free solution was obtained. Plan quality is the
ratio of the length of the static optimal path and the path obtained.
A plan quality of 1 indicates that the solution obtained was able
to minimize distance without any deviations. The aggregate met-
rics for the different domains and domain relationships are shown
in Table 1. Rows 3 and 6 in Table 1 include the added time to
compute plans in earlier domains for tunnel search, to provide an
absolute basis of comparison.



Σ1 and Σ2 can quickly generate solutions but is unable to solve
most of the scenarios as they don’t resolve fine-grained collisions.
The use of plans from Σ1 accelerates searches in Σ2 (Table 1, Row
3). However, the real benefit of using both Σ1 and Σ2 is evident
when performing repeated searches across domains in large envi-
ronments when an initial plan Π(Σ1) accelerates repeated refine-
ments in Σ2 (and other subsequent domains). Using Σ3 in a large
environment takes significantly longer to produce similar paths. Σ4

is unable to find a complete solution for large-scale problem in-
stances (we limit maximum number of nodes expanded to 104),
and the partial solutions often suffer from local minima, resulting
in a low success rate. The benefit of using tunnels is evident in
the dramatic reduction of the effective branching factor and nodes
expanded for Σ4.

When using the complete global path from Σ3 as a tunnel for Σ4

(Figure 4(a) and Row 6 in Table 1), the effective branching factor
reduces from 21.5 to 5.6, producing an exponential drop in node
expansion and computation time, and enabling complete solutions
to be generated in the space-time domain. This planning task is
able to successfully solve nearly 92% of the scenarios that were
generated. However, since sstart and sgoal are far apart, the large
depth of the search prevents this from being used at interactive rates
for many agents.

By using successive waypoints in Π(Σ2) as sstart and sgoal to cre-
ate a series of planning tasks in Σ3 and Σ4 (Figure 4(b) and Row 7
in Table 1), we reduce the breadth and depth of the search, allow-
ing solutions to be returned at a fraction of the time (6 ms), without
significantly affecting the success rate. The tradeoff is that indepen-
dent plans are generated between waypoints along the global path,
creating a two-level hierarchy between the domains.

Domain BF N T S Q
T (Σ1) 3.7 43 3 0.17 0.76
T (Σ2) 4.6 85 8 0.23 0.57
T (Σ2,Π(Σ1)) 2.1 17 5 0.32 0.65
T (Σ3) 7.4 187 18 0.68 0.73
T (Σ4) 21.5 104 2487 0.34 0.26
T (Σ4,Π(Σ3,Σ2,Σ1)) 5.6 765 136 0.92 0.64∑

Ti(Σ4,Π(Σ3,Σ2,Σ1)) 5.4 75 8 0.86 0.58

Table 1: Comparative evaluation of the domains, and the use of
multiple domains. BF = Effective branching factor. N = Average
number of nodes expanded. T = Average time to compute plan (ms).
S = Success rate of planner to produce collision-free trajectory. Q
= Plan quality. Row 6,7 corresponds to the domain relationships
illustrated in Figures 4(a) and (b) respectively.

Conclusion. The comparative evaluations of domains shows that
no single domain can efficiently solve the challenging problem in-
stances that were sampled. The use of tunnels significantly reduce
the effective branching factor of the search in Σ3 and Σ4, while
mapping successive waypoints in Π(Σ2) to multiple independent
planning tasks reduce the depth of the search in Σ3 and Σ4, without
significantly impacting success rate and quality. For the remaining
results in the paper, we adopt this domain relationship as it works
well for our application of simulating multiple goal-directed agents
in dynamic environments at interactive rates. Users may choose a
different relationship based on their specific needs.

7.2 Performance

We measure the performance of the framework by monitoring the
execution time of each task type, with multiple instances of plan-
ning tasks for Σ3 and Σ4. We limit the maximum deliberation time
tmax = 10 ms, which means that the total time executing any of the
tasks at each frame cannot exceed 10ms. For this experiment, we

limit the total number of tasks that can be executed in a single frame
to 2 (including T0) to visualize the execution time of each task over
different frames. Figure 6 illustrates the task execution times of a
single agent over a 30 second simulation for the scenario shown in
Figure 2(a). The execution task T0 which is responsible for charac-
ter animation and simple steering takes approximately 0.4−0.5 ms
of execution time every frame. Spikes in the execution time corre-
late to events in the world. For example, a local non-deterministic
change in the environment (Frames 31,157) triggers a plan update
in T (Σ3), which in turn triggers an update in T (Σ4). A global
change such as a crowd blocking a passage or a change in goal
(Frames 39, 237,281) triggers an update in T (Σ2) or T (Σ1) which
in turn propagates events down the task dependency chain.

Note that there are often instances during the simulation when the
start and goal changes significantly or when plans are invalidated,
requiring planning from scratch. However, we ensure that our
framework meets real-time constraints due to the following design
decisions: (a) limiting the maximum amount of time to deliber-
ate for the planning tasks, (b) intelligently distributing the available
computational resources between tasks with highest priority, and
(c) increasing the inflation factor to quickly produce a sub-optimal
solution when a plan is invalidated, and refining the plan in succes-
sive frames.

Figure 6: Task execution times of the different tasks in our frame-
work over the course of a 60 second simulation.

Memory. T (Σ1) and T (Σ2) precomputes navigation meshes for
the environment whose size depend on environment complexity,
but are shared by all agents in the simulation. The runtime memory
requirement of these tasks is negligible since it expands very few
nodes. The memory footprint of T (Σ3) and T (Σ4) is defined by
the number of nodes visited by the planning task during the course
of a simulation. Since each planning task in Σ3 and Σ4 searches
between successive waypoints in the global plan, the search hori-
zon of the planners is never too large. On average, the number
of visited nodes is 75 and 350 for T (Σ3) and T (Σ4) respectively
with each node occupying 16 − 24 bytes in memory. For 5 run-
ning instances of T (Σ3) and T (Σ4), this amounts to approximately
45KB of memory per agent. Additional memory for storing other
plan containers such as OPEN and CLOSED are not considered in
this calculation as they store only node references and are cleared
after every plan iteration.

Scalability. Our approach scales linearly with increase in number
of agents. The maximum deliberation time for all agents can be
chosen based on the desired frame rate which is then distributed
among agents and their respective planning tasks at each frame.
The cost of planning is amortized over several frames and all agents



(a) (b) (c) (d)

Figure 5: Different scenarios. (a) Agents crossing a highway with fast moving vehicles in both directions. (b) 4 agents solving a deadlock
situation at a 4-way intersection. (c) 20 agents distributing themselves evenly in a narrow passage, to form lanes both in directions. (d) A
complex environment requiring careful foot placement to obtain a solution.

need not plan simultaneously. Once an agent computes an initial
plan, it can execute the plan with efficient update operations until
it is allocated more deliberation time. If its most imminent plan is
invalidated, it is prioritized over other agents and remains station-
ary till computational resources are available. This ensures that the
simulation meets the desired framerate.

7.3 Scenarios

We demonstrate the benefits of our framework by solving many
challenging scenarios (Figure 5) requiring space-time precision, ex-
plicit coordination between interacting agents, and the factoring of
dynamic information (obstacles, moving platforms, user-triggered
changes, and other agents) at all stages of the decision process. All
results shown here were generated at 30 fps or higher, which in-
cludes rendering and character animation. We use an extended ver-
sion of the ADAPT character animation system [Johansen 2009] for
the results shown in the video.

Deadlocks. Multiple oncoming and crossing agents in narrow pas-
sageways cooperate with each other with space-time precision to
prevent potential deadlocks. Agents observe the presence of dy-
namic entities at waypoints along their global path and refine their
plan if they notice potentially blocked passageways or other high
cost situations. Crowd simulators deadlock for these scenarios,
while a space-time planner does not scale well for many agents.

Our framework Unity navigation and steering

Figure 7: Trajectory comparison of our method with an off the
shelf predictive steering algorithm in the Unity game engine. Our
framework minimizes deviation and uses speed variations to avoid
collisions in space-time.

Choke Points. This scenario shows our approach handling agents
arriving at a common meeting point at the same time, producing
collision-free straight trajectories. Figure 7 compares the trajec-
tories produced using our method with an off the shelf navigation
and predictive collision avoidance algorithm in the Unity game en-
gine. Our framework produces considerably smoother trajectories
and minimizes deviation by using subtle speed variations to avoid
collisions in space-time.

Unpredictable Environment Change. Our method efficiently re-
pairs solutions in the presence of unpredictable world events, such
as the user-placement of obstacles or other agents, which may in-
validate current paths.

Road Crossing. The road crossing scenario demonstrates 40 agents
using space-time planning to avoid fast moving vehicles and other
crossing agents.

Lane Selection for Bi-directional Traffic. This scenario requires
agents to make a navigation decision in choosing one of 4 lanes
created by the dividers. Agents distribute themselves among the
lanes, while bi-directional traffic chooses different lanes to avoid
deadlocks. This scenario requires non-deterministic dynamic in-
formation (other agents) to be accounted for while making global
navigation decisions. This is different from emergent lane forma-
tion in crowd approaches, which bottlenecks at the lanes and cause
deadlocks without a more robust navigation technique.

Four-way Crossing We simulate 100 oncoming and crossing
agents in a four-way crossing. The initial global plans in Σ1 take the
minimum distance path through the center of the crossing. How-
ever, Σ2 predicts a space-time collision between groups at the cen-
ter and performs plan refinement so that agents deviate from their
optimal trajectories to minimize group interactions. A predictive
steering algorithm only accounts for imminent neighboring threats
and is unable to avoid mingling with the other groups (second row
of Figure 7).

Space-Time Goals. We demonstrate a complex scenario where 4
agents in focus (additional agents are also simulated) have a tem-
poral goal constraint, defined as an interval (40 + / − 1second).
Agents exhibit space-time precision while jumping across moving
planes to reach their target and the temporal goal significantly im-
pacts the decision making at all levels, where the space-time do-
main maybe unable to meet the temporal constraint and require
plans to be modified in earlier domains. No other approach can
solve this with real-time constraints.

Many of these scenarios cannot be solved by the current state of the
art in multi-agent motion planning, which is able to either handle a
single agent with great precision, or simulate many simple agents
that exhibit reactive collision avoidance.



7.4 Framework Extensibility

The potential of our framework lies in the ability to use multiple
domains of control, and is not limited to the domains described in
Section 4.1, which only serve as a sufficient set to showcase the
benefits of our method. For example, the scenario shown in Fig-
ure 5(d) requires careful control over how the character chooses
its footsteps and cannot be solved by Σ4, which does not model
bipedal locomotion.

We add a footstep domain Σ5, which models the motion of the
character’s center of mass and feet placement using an inverted
spherical pendulum model for bipedal locomotion. The agent state
s = (x, v, fx, fφ, I ∈ {L,R}) includes the center of mass position
and velocity, the position and orientation of the current support foot,
and an indicator function for the swing foot. An action is chosen by
selecting the time period of the footstep, the orientation and speed
of the center of mass at the end of the step, and the orientation of
the foot plant. The space of possible values of these parameters,
while satisfying the constraints enforced by the inverted pendulum
model, defines the action space of Σ5. We discretize this space to
keep the set of possible footstep transitions at each state to approx-
imately 35. For implementation details of this domain, please refer
to [Singh et al. 2011b].

λ(s,Σ4,Σ5) maps states in Σ4 to one or more states in Σ5 in order
to define a tunnel τ(Σ5,Π(Σ4), tw) around Π(Σ4). We start from
a default double support configuration of the character at the start
and assume that the character takes a left foot stride first. The COM
position is used to define a set of valid positions of the support foot
at each space-time waypoint, and fx is constrained based on the
future COM position (where the character turns to next).

8 Discussion

Choice of Domains. The domains described in this paper repre-
sent popular solutions that are used in both academia and industry.
Navigation meshes (Σ1) are a standard solution [Mononen 2009]
for representing free spaces in arbitrarily large, complex, static en-
vironments with recent proposed extensions [van Toll et al. 2012]
that account for dynamic information (Σ2). A grid-based represen-
tation (Σ3) provides a uniform discretization of the environment,
and is widely used in robot motion planning [Koenig and Likhachev
2002; Likhachev et al. 2005]. The introduction of time as a third
dimension (Σ4) enables collision checks in the future, facilitating
more robust collision resolution.

These domains provide a nice balance between global navigation
and space-time planning, enabling us to showcase the strength of
our framework: the ability to use multiple domains of control, and
leverage solutions across domains to accelerate computations while
still providing a high degree of control fidelity. Additional do-
mains can be easily integrated (e.g., a footstep domain) to meet
application-specific needs, or solve more challenging motion plan-
ning problems.

Relationship Between Domains. Domains can be connected by
using the plan from one domain as a tunnel for the other, or by us-
ing successive waypoints along the plan as start and goal pair for
multiple planning tasks in a more complex domain. We evaluated
both domain relationships based on computational efficiency and
coverage, as shown in Table 1. Using waypoints from the navi-
gation mesh domain as start, goal pairs for planning tasks in the
grid and space-time domain keeps the search depth for Σ3 and Σ4

within reasonable bounds. The tradeoff is that a space-time plan is
never generated at a global level from an agent’s start position to its
target, thus sacrificing completeness guarantees. This design choice
worked well for our experiments where the reduction in success rate

of our framework when using this scheme was within reasonable
bounds, while providing a considerable performance boost, making
it suitable for practical game-like applications. Users may wish to
opt for different domain relationships depending on the application.
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A Events

Tasks monitor the following events:

START CHANGED: A task receives this event when the start state
changes. This event may be triggered when the agent moves, chang-
ing its current position – or by the propagation of changes through
the task dependency chain. This event triggers an update to account
for the change in start state, requiring plan refinement, and poten-
tially invalidating the current solution if the new start position does
not lie along the path.

GOAL CHANGED: A task receives this event when the desired goal
state changes. This event triggers an update to account for change
in goal and invalidates the current plan. When waypoints along
Π(Σ2) change, it triggers start and goal updates for tasks in Σ3

which are responsible for generating a path between the waypoints.

WORLD CHANGED: Different domains account for world changes
at different levels. The global navigation mesh domain Σ1 which
considers only static immovable geometry does not monitor this
event. The dynamic navigation mesh domain Σ2 keeps track of
the number of dynamic objects in each polygon of its triangulation
which contributes to the cost of the traversal. The grid domain Σ3

accounts for the current position of obstacles and agents in its plan
vicinity. The space-time domain Σ4 monitors for deviation in the
plans of neighboring agents which it accounts for while planning.
Note that event registration for WORLD CHANGED is based on spa-
tial and temporal locality. Tasks monitor this event only for aspects
of the environment that may change the current plan or are con-
tained in the visibility frustum of the agent. This ensures that plan-
ners only consider changes in the environment of interest which
require an update.

TUNNEL CHANGED: Planners can exploit plans in one domain in
order to accelerate searches in another domain. For example, the
path computed in Σ3 can be used to focus and accelerate the search
in Σ4. Tasks with this dependency must monitor other tasks and
repair its own solution when the plan changes. Section 6.3 describes
the use of tunnel search.

PLAN STATUS CHANGED: The status of the plan is monitored by
the task itself (requiring a change in task priority) and by the task
that it is dependent on. An invalid or sub-optimal solution gives the
task a higher priority while an optimal solution does not require any
further processing. If a task is unable to come up with a solution,
it requires a change in task parameters (e.g. increasing the tunnel
width to increase the search focus) or it means that current prob-
lem definition cannot be solved, requiring a new problem definition
from the task higher up in the task dependency chain.

B Algorithmic Details for Planning Task

ExecutePlanTask (Algorithm 1 [28–37]) is invoked each time the
planning task is executed. This function monitors events and calls
the appropriate event handlers, described in Algorithm 2. Given
a maximum amount to deliberate tmax, it refines the plan and
publishes the ε-suboptimal solution using the AD* planning algo-
rithm [Likhachev et al. 2005]. We briefly describe our implemen-
tation of the AD* algorithm and how we handle changes in start,
goal, obstacle movement, and tunnel updates, and refer the readers
to [Likhachev et al. 2005] for more details.

AD* performs a backward search and maintains a least cost path
from the goal sgoal to the start sstart by storing the cost esti-
mate g(s) from s to sgoal. However, in dynamic environments,
edge costs in the search graph may constantly change and expanded
nodes may become inconsistent. Hence, a one-step look ahead cost

key(s)1
if g(s) > rhs(s) then2

return [rhs(s) + ε · h(s, sstart); rhs(s)]3
else4

return [g(s) + ·h(s, sstart); g(s)]5

UpdateState(s)6
if (s 6= sgoal) then7

s′ = args′∈pred(s) min(c(s, s′) + g(s′))8
rhs(s) = c(s, s′) + g(s′)9
prev(s) = s′10

if (s ∈ OPEN) remove s from OPEN11
if g(s) 6= rhs(s) then12

if (s /∈ CLOSED) insert s in OPEN with key(s)13
else insert s in INCONS14

Insert s in VISITED15

ComputeOrImprovePath (tmax)16
while (mins∈OPEN(key(s) < key(sstart) ∨ rhs(sstart) 6=17
g(sstart) ∨Π(sstart, sgoal) = NULL) ∧ t < tmax do

s = args∈OPEN min(key(s))18
if (g(s) > rhs(s)) then19

g(s) = rhs(s)20
CLOSED = CLOSED ∪ s21

else22
g(s) =∞23
UpdateState(s)24

foreach s′ ∈ succ(s) do25
UpdateState(s′)26

ExecutePlanTask (tmax)27
Move states from INCONS to OPEN28
CLOSED = NULL29
if START CHANGED then StartChangeUpdate (sc)30
if GOAL CHANGED then GoalChangeUpdate (snew)31
if WORLD CHANGED then32

foreach (obstacle change s→ s′ ) ObstacleChangeUpdate (s,s′)33
if TUNNEL CHANGED then34

TunnelChangeUpdate (Π
′
(Σld, sstart, sgoal))35

ComputeOrImprovePath (tmax)36
trigger PLAN STATUS CHANGED37

Algorithm 1: AD* Planner used to compute and update paths for
planning tasks T (Σ) in each of the 4 domains.

estimate rhs(s) is introduced [Koenig and Likhachev 2002] to de-
termine node consistency.

rhs(s) =

{
0 if s = sgoal
arg min(c(s, s′) + g(s′)) else

(7)

The priority queue OPEN contains the states that need to be ex-
panded for every plan iteration, with the priority defined using a
lexicographic ordering of a two-tuple key(s), defined for each state.
OPEN contains only the inconsistent states (g(s) 6= rhs(s)) which
need to be updated to become consistent. Nodes are expanded in
increasing priority until there is no state with a key value less than
the start state. A heuristic function h(s, s′) computes an estimate of
the optimal cost between two states, and is used to focus the search
towards sstart.

Instead of processing all inconsistent nodes, only those nodes
whose costs may be inconsistent beyond a certain bound, defined by
the inflation factor ε are expanded. It performs an initial search with
an inflation factor ε0 and is guaranteed to expand each state only
once. An INCONS list keeps track of already expanded nodes that
become inconsistent due to cost changes in neighboring nodes. As-
suming no world changes, ε is decreased iteratively and plan quality



StartChangeUpdate (sc)1
if sc /∈ Π(sstart, sgoal) ∧ d(sc,Π(sstart, sgoal)) > tmax then2

ClearPlanData()3
ε = ε04

else5
sstart = sc6
foreach s ∈ OPEN do7

Update key(s)8

GoalChangeUpdate (snew)9
ClearPlanData()10
ε = ε011
sgoal = snew12

ObstacleChangeUpdate (s,s′)13
if s′ ∈ Π(sstart, sgoal) then14

Π(sstart, sgoal) = Π(sstart, sgoal) - s′15
ε = ε016

if pred(s)
⋂
VISITED 6= NULL then UpdateState(s)17

g(s′) =∞18
if s′ ∈ CLOSED then19

foreach s′′ ∈ succ(s′) do20
if s′′ ∈ VISITED then UpdateState(s′′)21

TunnelChangeUpdate (Π(sstart, sgoal))22
foreach s ∈ VISITED do23

if |d(s,Π(sstart, sgoal))| > tw then24
g(s) =∞25
if s ∈ CLOSED then26

foreach s′ ∈ succ(s) do27
if s′ ∈ VISITED then UpdateState(s′)28

else29
ht(s, sstart) = h(s, sstart) + |d(s,Π(sstart, sgoal))|30

Algorithm 2: Event handlers for change in start state, goal state,
environment, and tunnel.

is improved until an optimal solution is reached (ε = 1). Each time
ε is decreased, all states made inconsistent due to change in ε are
moved from INCONS to OPEN with key(s) based on the reduced
inflation factor, and CLOSED is made empty. This improves effi-
ciency since it only expands a state at most once in a given search
and reconsidering the states from the previous search that were in-
consistent allows much of the previous search effort to be reused,
requiring only a minor amount of computation to refine the solu-
tion. ComputeOrImprovePath (Algorithm 1 [16–26]) gives the
routine for computing or refining a path from sstart to sgoal.

When change in edge costs are detected, new inconsistent nodes
are placed into OPEN and node expansion is repeated until a least
cost solution is achieved within the current ε bounds. When the
environment changes substantially, it may not be feasible to repair
the current solution and it is better to increase ε so that a less optimal
solution is reached more quickly.

An increase in edge cost may cause states to become under-
consistent (g(s) < rhs(s)) where states need to be inserted into
OPEN with a key value reflecting the minimum of their old cost and
their new cost. In order to guarantee that under-consistent states
propagate their new costs to their affected neigbhors, their key val-
ues must use uninflated heuristic values. This means that different
key values must be computed for under- and over-consistent states,
as shown in Algorithm 1 [1 – 5]. This key definition allows AD*
to efficiently handle changes in edge costs and changes to inflation
factor.

AD* uses a backward search to handle agent movement along the
plan by recalculating key values to automatically focus the search
repair near the updated agent state. It can handle changes in edge

costs due to obstacle and start movement, and needs to plan from
scratch each time the goal changes. The routines to handle change
in start, goal, and world changes are described below.

StartChangeUpdate. When the start moves along the current plan,
the key values of all states in OPEN are recomputed to re-prioritize
the nodes to be expanded. This focuses processing towards the up-
dated agent state allowing the agent to improve and update its so-
lution path while it is being traversed. When the new start state de-
viates substantially from the path, it is better to plan from scratch.
Alg 2 [1–8] provides the routine to handle start movement.

GoalChangeUpdate. Alg 2 [9–12] clears plan data and resets ε
whenever the goal changes and plans from scratch at the next step.

ObstacleChangeUpdate. Alg 2 [13–21] handles change in obsta-
cles. An obstacle movement from s to s′ results in a free state at
s and an invalidation of the previously valid state s′. Nodes in the
vicinity of the obstacle movement (i.e., successors of s and s′) be-
come inconsistent and may have invalid references to s′, which is
no longer free, requiring them to be updated. If the obstacle move-
ment invalidates the current plan, we reset ε to quickly produce a
valid path at the next step, which can be refined in subsequent iter-
ations.

TunnelChangeUpdate. This routine is used when the planning
task monitors the computed path of another planning task T (Σld)
in a lower-dimensional domain to focus and accelerate its own
searches, as described in Section 6.3.

C Performance of Tunnel Search

We evaluate the performance of tunnel-based search on 100 ran-
domly sampled problem definitions (environment configuration,
start and goal state) in the Σ4 with a constraint enforcing the max-
imum Euclidean distance between sstart and sgoal to be 20 grid
units. This corresponds to comparable problem definitions for these
planners in our multi-domain framework. For a given problem in-
stance, we first execute T (Σ3) to generate a spatial path Π(Σ3)
which is used to focus the search in T (Σ4,Π(Σ3)). In addition, we
solve the problem instance without a tunnel constraint to provide a
basis for comparison.

Table 2 provides the number of nodes expanded and the total plan-
ning time for the three planning tasks. The aggregate performance
of using T (Σ3) and T (Σ4,Π(Σ3)) is provided for reference. We
notice that tunnel greatly expedites the search process by expanding
4X fewer nodes, and providing a 3X performance boost on aver-
age. Out of the 100 scenarios, 8 scenarios resulted in the tunnel
search not being able to initially find a solution and had to increase
its tunnel width and replan. Even in these cases, the tunnel search
outperformed T (Σ4). For 3 scenarios, T (Σ4) could not generate a
solution within the maximum time allotment of 100ms. These were
problem instances with a local minima where the search heuristic
alone falsely focused the search down a wrong path but the use of
the tunnel mitigated the need of the exploration of local minima in
the space-time domain.

Planning Task # of nodes Time (ms)

T (Σ3) 47 3.5

T (Σ4,Π(Σ3)) 246 7.3

T (Σ3) + T (Σ4,Π(Σ3)) 293 10.8

T (Σ4) 1041 21.2

Table 2: Performance evaluation of using tunnel based search.


