Multi-Domain Real-time Planning in Dynamic Environments

Mubbasir Kapadia*!, Alejandro Porrest?, Francisco Garcia®?, Vivek Reddy®!, Nuria Pelechano¥2, and Norman 1. Badler!l!

'University of Pennsylvania
2Universitat Politcnica de Catalunya
3University of Massachusetts Amherst

Figure 1: Two agents navigating with space-time precision through a complex dynamic environment.

Abstract

This paper presents a real-time planning framework for multi-
character navigation that enables the use of multiple heterogeneous
problem domains of differing complexities for navigation in large,
complex, dynamic virtual environments. The original navigation
problem is decomposed into a set of smaller problems that are dis-
tributed across planning tasks working in these different domains.
An anytime dynamic planner is used to efficiently compute and re-
pair plans for each of these tasks, while using plans in one domain
to focus and accelerate searches in more complex domains. We
demonstrate the benefits of our framework by solving many chal-
lenging multi-agent scenarios in complex dynamic environments
requiring space-time precision and explicit coordination between
interacting agents, by accounting for dynamic information at all
stages of the decision-making process.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: real-time navigation, space-time planning

*mubbasir @seas.upenn.edu
Tabeacco@gmail.com
*fmaxgarcia@gmail.com
Svivreddy @seas.upenn.edu
9npelechano@lsi.upc.edu
Ibadler@ seas.upenn.edu

1 Introduction

The next generation of interactive applications requires high fidelity
navigation of interacting autonomous agents in non-deterministic,
dynamic virtual worlds. The environment and agents are constantly
affected by unpredictable forces (e.g., human input), making it im-
possible to accurately extrapolate the future world state to make
optimal decisions. These complex domains require robust naviga-
tion algorithms that can handle partial and imperfect knowledge,
while still making decisions which satisfy space-time constraints.

Different situations require different granularity of control. An
open environment with no agents and static obstacles requires only
coarse-grained control while cluttered dynamic environments re-
quire fine-grained character control with careful planned decisions
that have spatial and temporal precision. Some situations (e.g., po-
tential deadlocks) may require explicit coordination between mul-
tiple agents.

The problem domain of interacting autonomous agents in dynamic
environments is extremely high-dimensional and continuous, with
infinite ways to interact with objects and other agents. Having a
rich action set, and a system that makes intelligent action choices,
facilitates robust, intelligent virtual characters, at the expense of in-
teractivity and scalability. Greatly simplifying the problem domain
yields interactive virtual worlds with hundreds and thousands of
agents that exhibit simple behavior. The ultimate, far-reaching goal
is still a considerable challenge: a real-time system for autonomous
character control that can handle many characters, without compro-
mising control fidelity.

Previous work simulates crowds by decoupling global naviga-
tion [Sung et al. 2005; Kallmann 2010] and local collision avoid-
ance [Pelechano et al. 2008], or demonstrates space-time planning
for global navigation for a single character [Levine et al. 2011],
while meeting real-time constraints. These approaches provide a
tradeoff between number of agents, control fidelity, and environ-
ment complexity. To our knowledge, no proposed technique effi-
ciently accounts for the dynamic nature of the environment at all
levels of the decision-making process.

This paper proposes a real-time planning framework for multi-
character navigation that uses multiple heterogeneous problem do-
mains of differing complexities for navigation in large, complex,

dynamic virtual environments. We define a set of problem domains
(spaces of decision-making) which differ in the complexity of their
state representations and the fidelity of agent control. These range
from a static navigation mesh domain which only accounts for static
objects in the environment, to a space-time domain that factors in
dynamic obstacles and other agents at much finer resolution. These
domains provide different trade-offs in performance and fidelity of
control, requiring a framework that efficiently works in multiple do-
mains by using plans in one domain to focus and accelerate searches
in more complex domains.

A global planning problem (start and goal configuration) is dynam-
ically decomposed into a set of smaller problem instances across
different domains, where an anytime dynamic planner is used to ef-
ficiently compute and repair plans for each of these problems. Plan-
ning tasks are connected by either using the computed path from
one domain to define a tunnel to focus searches, or using succes-
sive waypoints along the path as start and goal for a planning task
in another domain to reduce the search depth, thereby accelerat-
ing searches in more complex domains. Using our framework, we
demonstrate real-time character navigation for multiple agents in
large-scale, complex, dynamic environments, with precise control,
and little computational overhead.

2 Related Work

There is extensive research in multi-agent simulations with many
proposed techniques that differ in domain complexity and con-
trol fidelity. Global navigation approaches [Sung et al. 2005; Sud
et al. 2007; van den Berg et al. 2008b; Kallmann 2010] precom-
pute a roadmap of the global environment which is used for mak-
ing efficient navigation queries, but generally regard the environ-
ment to be static. Crowd approaches [Pelechano et al. 2008; Thal-
mann 2008] compromise on control fidelity in an effort to effi-
ciently simulate a large number of agents in real-time. Reactive
approaches [Reynolds 1987; Lamarche and Donikian 2004; Loscos
et al. 2003] avoid collisions with most imminent threats while pre-
dictive approaches [van den Berg et al. 2008a; Paris et al. 2007;
Kapadia et al. 2009] approximate the trajectories of neighboring
agents in choosing collision-free velocities. The work in [Singh
et al. 2011a] proposes a hybrid technique that combines reactive
rules, predictions, and planning for simulating crowds.

Planning based control of autonomous agents has demonstrated
control of single agents with large action spaces [Choi et al. 2003;
Fraichard 1999; Shapiro et al. 2007]. In an effort to scale to a large
number of agents, meet real-time constraints, and handle dynamic
environments, a large variety of methods [Pettré et al. 2008] have
been proposed. The complexity of the domain is made simpler [Lau
and Kuftner 2005; Lo and Zwicker 2008] to reduce the branching
factor of the search, or the horizon of the search is limited to a
fixed depth [Singh et al. 2011b; Choi et al. 2011]. Anytime plan-
ners [Likhachev et al. 2003; van den Berg et al. 2006] tradeoff opti-
mality to satisfy strict time constraints, and have been successfully
demonstrated for motion planning for a single character [Safonova
and Hodgins 2007]. Randomized planners [Hsu et al. 2002; Shapiro
et al. 2007] expand nodes in the search graph using sampling meth-
ods, greatly reducing search efforts to make it a feasible solution in
high-dimensional, continuous domains. The work in [Phillips and
Likhachev 2011] introduces safe time intervals as a novel abstrac-
tion of the temporal domain for planning in dynamic environments.

Hierarchical Planning. Hierarchical planners [Botea et al. 2004;
Bulitko et al. 2007; Holte et al. 1996] reduce the problem complex-
ity by precomputing abstractions in the state space, which can be
used to speed up plan efforts. Given a discrete environment rep-
resentation, neighboring states are first clustered together to pre-

compute abstractions for high-level graphs. Different algorithms
are proposed [Kring et al. 2010] which plan paths hierarchically
by planning at the top level first, then recursively planning more
detailed paths in the lower levels, using different methods [Lacaze
2002; Sturtevant and Geisberger 2010] to communicate informa-
tion across hierarchies. These include using the plans in high-
level graphs to compute heuristics for accelerating searches in low-
level graphs [Holte et al. 2005], using the waypoints as intermedi-
ate goals, or using the high-level path to define a tunnel [Gochev
et al. 2011] to focus the search in the low-level graph. The work
in [Arikan and Forsyth 2002] demonstrates the use of randomized
search in a hierarchy of motion graphs for interactive motion syn-
thesis.

Comparison to Prior Work. Our work builds on top of excel-
lent recent contributions [Levine et al. 2011; Lopez et al. 2012]
showcasing the use of space-time planning for global navigation
in dynamic environments, for a single agent. Levine et al. [2011]
uses parameterized locomotion controllers to efficiently reduce the
branching factor of the search and assumes that object motion
have known trajectories, thus mitigating the need for replanning.
Lopez et al. [2012] introduces a dynamic environment represen-
tation which is computed by deducing the evolution of the en-
vironment topology over time, thus enabling space-time collision
avoidance with no prior knowledge of how the world changes. In
contrast, we use multiple heterogeneous domains of control, and
present a planning-based control scheme that reuses plan efforts
across domains to demonstrate real-time, multi-character naviga-
tion, in constantly changing dynamic environments. Instead of au-
tomatically computing abstractions from a given representation, we
develop a set of heterogeneous domains with different state and ac-
tion representations that provide trade-offs in control fidelity and
computational performance, and investigate different methods of
communicating between domains to meet our application needs.

3 Overview

The problem domain of a planner determines its effectiveness in
solving a particular problem instance. A complex domain that ac-
counts for all environment factors such as dynamic environments
and other agents, and has a large branching factor in its action space
can solve more difficult problems, but at a larger cost overhead. A
simpler domain definition provides the benefit of computational ef-
ficiency while compromising on control fidelity. Our framework
enables the use of multiple heterogeneous domains of control, pro-
viding a balance between control fidelity and computational effi-
ciency, without compromising either.

A global problem instance P, is dynamically decomposed into a

set of smaller problem instances {Pl} across different planning
domains {X;}. Section 4 describes the different domains, and Sec-
tion 5 describes the problem decomposition across domains. Each

problem instance P s assigned a planning task T(P/), and an
anytime dynamic planner (Section 5.1) is used to efficiently com-
pute and repair plans for each of these tasks, while using plans in
one domain to focus and accelerate searches in more complex do-
mains. Plan efforts across domains are reused in two ways. The
computed path from one domain can be used to define a tunnel
which focuses the search, reducing its effective branching factor.
Each pair of successive waypoints along a path can also be used
as start,goal pairs for a planning task in another domain, thus re-
ducing the search depth. Both these methods are used to focus and
accelerate searches in more complex domains, providing real-time
efficiency without compromising on control fidelity. Section 6 de-
scribes the relationships between domains.

4 Planning Domains

A problem domain is defined as ¥ = (S, A, c(s, s'), h(s, Sgoal))
where the state space S = {Sseif X Senv X Sagents} includes the
internal state of the agent S;.; s, the representation of the environ-
ment Sery, and other agents Sqgents. Sserf may be modeled as a
simple particle with a collision radius. S.,, can be an environment
triangulation with only static information or a uniform grid repre-
sentation with dynamic obstacles. Sqgents is defined by the vicinity
within which neighboring agents are considered. Imminent threats
may be considered individually or just represented as a density dis-
tribution at far-away distances. The action space A defines the set
of all possible successors succ(s) and predecessors pred(s) at
each state, as shown in Equation 1. Here, §(s, i) describes the i*"
transition, and (s, s”) is used to check if the transition from s to s’
is possible. The cost function c(s, s’) defines the cost of transition
from s to s. The heuristic function h(s, Sg0q1) defines the estimate
cost of reaching a goal state.

succ(s) = {s 4+ 6(s,1)|®(s,s’) = TRUE Vi=1to N} (1)

A problem definition P = (X, Sstart, Sgoal) describes the initial
configuration of the agent, the environment and other agents, along
with the desired goal configuration in a particular domain. Given
a problem definition P for domain X, a planner searches for a
sequence of transitions to generate a plan I1(X, Sstart, Sgoal) =
{si|si € S(X)} that takes an agent from Sstart t0 Sgoat-

4.1 Multiple Domains of Control

We define 4 domains which provide a nice balance between global
static navigation and fine-grained space-time control of agents in
dynamic environments. Figure 2 illustrates the different domain
representations for a given environment.

Static Navigation Mesh Domain ¥;. This domain uses a triangu-
lated representation of free space and only considers static immov-
able geometry. Dynamic obstacles and agents are not considered in
this domain. The agent is modeled as a point mass, and valid tran-
sitions are between connected free spaces, represented as polygons.
The cost function is the straight line distance between the center
points of two free spaces. Additional connections are also precom-
puted (or manually annotated) to represent transitions such as jump-
ing with a higher cost definition. The heuristic function is the Eu-
clidean distance between a state and the goal. Searching for an op-
timal solution in this domain is very efficient and quickly provides
a global path for the agent to navigate. We use Recast [Mononen
2009] to precompute the navigation mesh for the static geometry in
the environment.

Dynamic Navigation Mesh Domain >». This also uses triangu-
lations to represent free spaces and coarsely accounts for dynamic
properties of the environment to make a more informed decision at
the global planning layer. The work in [van Toll et al. 2012] em-
beds population density information in environment triangulations
to account for the movement of agents at the global planning layer.
We adopt a similar method by defining a time-varying density field
¢(t) which stores the density of moveable objects (agents and ob-
stacles) for each polygon in the triangulation at some point of time
t. ¢(to) represents the density of agents and obstacles currently
present in the polygon. The presence of objects and agents in poly-
gons at future timesteps can be estimated by querying their plans (if
available). The space-time positions of deterministic objects can be
accurately queried while the future positions of agents can be ap-
proximated based on their current computed paths, assuming that

they travel with constant speed along the path without deviation.
¢(t) contributes to the cost of selecting a waypoint in 32 during
planning. The resolution of the triangulation may be kept finer than
33 to increase the resolution of the dynamic information in this do-
main. Hence, a set of global waypoints are chosen in this domain
which avoids crowded areas or other high cost regions.

Grid Domain ¥3. The grid domain discretizes the environment
into grid cells where a valid transition is considered between adja-
cent cells that are free (diagonal movement is allowed). An agent
is modeled as a point with a radius (orientation and agent speed is
not considered in this domain). This domain only accounts for the
current position of dynamic obstacles and agents, and cannot pre-
dict collisions in space-time. The cost and heuristic are distance
functions that measure the Eucledian distance between grid cells.

Space-Time Domain 3>,.

This domain models the §'=<xH(v+Av).AtL

+Av, t+At >
current state of an agent as VHAy, tAt
a space-time position with a @\ v
current velocity (X,v,t). The t
figure alongside illustrates the N Ag
e . t+At zf;-
schematic illustration of the R

state and action space in X4,
showing a valid transition,
and an invalid transition due
to a space-time collision with
a neighboring agent. The transition function §(s,) for X4 is
defined below:

s=<X,V,t>

8(s,7) = {Av; - At|Av; = (Av; - sin AG;, Av; - cos A;)Vi}

where Av = {0, %a} is the possible speed changes and A9 =
{0,£%,£%,£7 } is the possible orientation changes the agent can
make from its current state. For example, Av = a, A = Z pro-
duces a transition where the agent accelerates by a for the duration
of the timestep and rotates by 5. The bounds of A6 are limited be-
tween {—7, 5} to limit the maximum rate of turning. Transitions
are also bound so that the speed and acceleration of an agent cannot
exceed a given threshold. Jumps are additionally modeled as a high
cost transition between two space-time points such that the region
between them may be occupied or untraversable for that time inter-
val. Inspite of the coarse discretization of A, the branching factor
of this domain is much higher, providing greater degree of control
fidelity with added computational overhead.

34 accounts for all obstacles (static and dynamic) and other agents.
The traversability of a grid cell is queried in space-time by checking
to see if moveable obstacles and agents occupy that cell at that par-
ticular point of time, by using their published paths. For space-time
collision checks, only agents and obstacles that are within a certain
region from the agent, defined using a foveal angle intersection, are
considered. The cost and heuristic definitions have a great impact
on the performance in 4. We use an energy based cost formula-
tion that penalizes change in velocity with a non-zero cost for zero
velocity. Jump transitions incur a higher cost. The heuristic func-
tion penalizes states that are far away from sg,q; in both space and
time. This is achieved using a weighted combination of a distance
metric and a penalty for a deviation of the current speed from the
speed estimate required to reach sgoq.

The domains described here are not a comprehensive set and only
serve to showcase the ability of our framework to use multiple het-
erogeneous domains of control in order to solve difficult problem
instances at a fraction of the computation cost. Our framework can
be easily extended to use other domain definitions (e.g., a footstep
domain), as described in Section 7.4.

(b)

)

Figure 2: (a) Problem definition with initial configuration of agent and environment. (b) Global plan in static navigation mesh domain 3,
accounting for only static geometry. (c) Global plan in dynamic navigation mesh domain %o accounting for cumulative effect of dynamic
objects. (d) Grid plan in ¥3. (e) Space-time plan in 3.4 that avoids dynamic threats and other agents.

NON-DETERMINISTIC
WORLD_CHANGE
(CUMULATIVE EFFECT)

S GOAL

GOAL_CHANGE

A TUNNEL_CHANGE

GOAL_CHANGE

START_CHANGE

START_CHANGE

NON-DETERMINISTIC
WORLD_CHANGE
(LOCAL EFFECT)

TUNNEL_CHANGE

(L) (%) @
S
e
T TG .
TUNNEL_CHANGE /(m
9

T,

TUNNEL_CHANGE

T

Figure 3: Expanded illustration of domain relationship shown in Figure 4(b). A global problem instance (start and goal state) is decomposed
into a set of smaller problem instances across multiple planning domains. Planning tasks T () are assigned to each of these problems and
scheduled using a dynamic priority scheme based on events from the environment and other tasks.

5 Problem Decomposition and Multi-Domain
Planning

Figure 4(a) illustrates the use of tunnels to connect each of the 4 do-
mains, ensuring that a complete path from the agents initial position
to its global target is computed at all levels. Figure 4(b) shows how
32 and X3 are connected by using successive waypoints in II(Z2)
as start and goal for independent planning tasks in X3. This relation
between X and Y3 allows finer-resolution plans being computed
between waypoints in an independent fashion. Limiting >3 (and
3.4) to plan between waypoints instead of the global problem in-
stance ensures that the search horizon in these domains is never
too large, and that fine-grained space-time trajectories to the initial
waypoints are computed quickly. However, completeness and op-
timality guarantees are relaxed as 33, >4 never compute a single
path to the global target.

Figure 3 illustrates the different events that are sent between plan-
ning tasks to trigger plan refinement and updates for the domain
relationship in Figure 4(b). X, is first used to compute a path
from Sstart tO Sgoal, ignoring dynamic obstacles and other agents.
T1(%4) is used to accelerate computations in X2, which refines the
global path to factor in the distribution of dynamic objects in the
environment. Depending on the relationship between Y2 and X3,

@ PATH PATH PATH @
CHANGE CHANGE HANGE

(a)

(b)

Figure 4: Relationship between domains. (a) Use of tunnels to
connect each of the 4 domains. (b) Use of successive waypoints in
I1(X2) as start, goal pairs to instantiate multiple planning tasks in
23 and 24.

a single planning task or multiple independent planning tasks are
used in X3. Finally, the plan(s) of T'(X3) are used to accelerate
searches in 4.

Changes in Ss¢qr¢ and Sgoar trigger plan updates in T(%1), which

are propagated through the task dependency chain. T"(X2) monitors
plan changes in T'(31) as well as the cumulative effect of changes
in the environment to refine its path. Each 7'(X3) instance monitors
changes in the waypoints along IT(X5) to repair its solution, as well
as nearby changes in obstacle and agent position. Finally, 7'(24)
monitors plan changes in T'(X3) (which it depends on) and repairs
its solution to compute a space-time trajectory that avoids collisions
with static and dynamic obstacles, as well as other agents.

Events are triggered (outgoing edges) and monitored (incoming
edges) by tasks, creating a cyclic dependency between tasks, with
To (agent execution) monitoring changes in the plan produced by
the particular 7'(X4), which monitors the agents most imminent
global waypoint. Tasks that directly affect the agent’s next decision,
and tasks with currently invalid or sub-optimal solutions are given
higher priority. Given the maximum amount of time to deliberate
tmaz, the agent pops one or more tasks that have highest priority
and divides the deliberation time across tasks (most imminent tasks
are allocated more time). Task priorities constantly change based
on events triggered by the environment and other tasks.

5.1 Planning Tasks

A task T'(P) is a planner which is responsible for generating and
maintaining a valid (and ideally optimal) solution for a particular
problem definition P = (X, Sstart, Sgoar) Where Sstart, Sgoal, and
the search graph may be constantly changing. There are 4 types of
tasks, each of which solves a particular problem in the domains de-
scribed in Section 4. An additional task T is responsible for mov-
ing the agent along the path, while enforcing steering and collision
constraints.

Planning tasks constantly receive events from the environment and
other tasks, which render the current plan invalid, forcing it to con-
stantly update, refine, and repair its existing plan. For this purpose,
we use the Anytime Dynamic A* planner [Likhachev et al. 2005]
which combines the properties of incremental planners such as D*
Lite [Koenig and Likhachev 2002] and anytime algorithms such as
ARA* [Likhachev et al. 2003] to provide an algorithm which ef-
ficiently repairs its solutions to accommodate world changes and
agent movement, while providing solution guarantees under strict
time constraints. It performs repeated backward searches (from
goal to start), reusing previous search efforts to iteratively produce
solutions with improved bounds on optimality, like ARA*. This is
done using an inflation factor € which effectively weighs the contri-
bution of the heuristic value in estimation of node costs, thus focus-
ing the search towards the goal, expanding fewer nodes to produce
€ sub-optimal solutions [Pearl 1984]. We provide an overview of
the algorithmic details of the planning task in Appendix B and re-
fer the readers to a comprehensive review of the AD* algorithm
here [Likhachev et al. 2005].

Plan Repair vs. Planning from Scratch. Note that there are often
instances during the simulation when the start and goal changes of
planning tasks change or when plans are invalidated due to obstacle
movement. Plans are always recomputed for goal changes. AD*
performs a backward search which allows it to efficiently update
the search graph to accommodate agent movement along the path.
For significant start changes or when the plan is invalidated due
to obstacle movement, the choice between replanning or repairing
a plan is a heuristic decision with tradeoffs in performance. Plan
repair may expand lesser nodes in the current iteration but bloat the
number of nodes visited, thus impacting performance in subsequent
plan iterations. It is not uncommon to plan from scratch during the
simulation. By resetting the inflation factor to a high value, we
can quickly compute a valid sub-optimal plan while meeting time
constraints and refine it in successive plan iterations.

5.2 Events and Task Priorities

Events are triggered and monitored by planning tasks in different
domains, as illustrated in Figure 3. Changes in start and goal, or en-
vironment changes may potentially invalidate current plans, requir-
ing plan refinement. Tasks that use tunnels to accelerate searches
in more complex domains, monitor plan changes in other tasks. Fi-
nally, tasks observe the optimality status of their own plans to deter-
mine their task priority. Appendix A describes the different events
in more detail.

The priority of a task p(T,) determines the tasks that are picked
to be executed at every time step, with tasks having smallest p(Tq)
chosen for execution (p(T4) is short for p(T'(X,))). Task To, which
handles agent movement always has a priority of 1. Priority of other
tasks is calculated as follows:

1if Tqa = To
p(Ta) = { 1(Ta, To) - 2(Taq) else @

where 11(Tq, To) is the number of edge traversals required to reach
To from T, in the task dependency chain (Figure 3). 2(T,) denotes
the current state of the plan of T, and is defined as follows:

1if SOLUTION_INVALID
€ if plan inflation factor, € > 1 3)
oo if plan inflation factor, € = 1

Q(Ta) =

where € is the inflation factor used to determine the optimality
bounds of the current plan for that task. The agent pops one or
more tasks that have highest priority and divides the deliberation
time available across tasks, with execution-critical tasks receiving
more time. Tasks that have the same priority are ordered based on
task dependency. Hence, Ty is always executed at the end of every
update after all planning tasks have completed.

The overall framework enforces strict time constraints. Given an
allocated time to deliberate for each agent (computed based on de-
sired frame rate and number of agents), the time resource is dis-
tributed based on task priority. In the remote event that there is
no action to execute, the agent remains stationary (no impact on
frame-rate) for a few frames (fractions of a second) until a valid
plan is computed.

6 Relationship between Domains

The complexity of the planning problem increases exponentially
with increase in dimensionality of the search space — making the use
of high-dimensional domains nearly prohibitive for real-time appli-
cations. In order to make this problem tractable, planning tasks
must efficiently use plans in one domain to focus and accelerate
searches in more complex domains. Section 6.1 describes a method
for mapping a state from a low-dimensional domain to one or more
states in a higher dimensional domain. Sections 6.2 and 6.3 de-
scribe two ways in which plans in one domain can be used to focus
and accelerate searches in another domain.

6.1 Domain Mapping

We define a 1 : n function A(s, X, E/) that allows us to maps states
in S(X) to one or more equivalent states in ().

A3, 5,8) s — {55 €S(E)As =5} @)

The mapping functions are defined specifically for each domain
pair. For example, A(s, 31, X2) maps a polygon s € S(X1) to
one or more polygons {s'|s" € S(Z2)} such that s’ is spatially
contained in s. If the same triangulation is used for both ¥; and
3o, then there exists a one-to-one mapping between states. Sim-
ilarly, A(s,X2,33) maps a polygon s € S(32) to multiple grid
cells {s’'|s’" € S(X3)} such that s’ is spatially contained in s.
A(s, X3, X4) is defined as follows:

A(s,23,34) 1 (x) = {(x+ W(Ax),t + W(AL)} (5)

where W (A) is a window function in the range [—-A, +A]. The
choice of t is important in mapping >3 to 4. Since we use A
to effectively map a plan IT(Xs, Sstart, Sgoar) in X3 to a tunnel in
3.4, we can exploit the path and the temporal constraints of Sstart
and sg0q; to define ¢ for all states along the path. We do this by
calculating the total path length and the time to reach sgoq;. This
allows us to compute the approximate time of reaching a state along
the path, assuming the agent is traveling at a constant speed along
the path.

6.2 Mapping Successive Waypoints to Independent
Planning Tasks.

Successive waypoints along the plan from one domain can be used
as start and goal for a planning task in another domain. This effec-
tively decomposes a planning problem into multiple independent
planning tasks, each with a significantly smaller search depth.

Consider a path II(X2) = {s;|s; € S(32),Vi € (0,n)} of
length n. For each successive waypoint pair (s;, si+1), we define
a planning problem P; = (X3, Sstart, Sgoal) SUuch that sstare =
A(si,32,X3) and Sgoar = A(Si+1, X2, 23). Even though A may
return multiple equivalent states, we choose only one candidate
state. For each problem definition P;, we instantiate an indepen-
dent planning task 7"(P;)which computes and maintains path from
Si to s;+1 in X3. Figure 4 illustrates this connection between o
and 23.

6.3 Tunnels

The work in [Gochev et al. 2011] observes that a plan in a low
dimensional problem domain can often be exploited to greatly ac-
celerate high-dimensional complex planning problems by focusing
searches in the neighborhood of the low dimensional plan. They in-
troduce the concept of a tunnel 7(Xxq, II(X14), tw) as a sub graph
in the high dimensional space 3j,4 such that the distance of all states
in the tunnel from the low dimensional plan IT(3;q) is less than the
tunnel width ¢,,. Based on their work, we use plans from one do-
main in order to accelerate searches in more complex domains with
much larger action spaces. A planner is input a low dimensional
plan IT(X;4) which is used to focus state transitions in the sub graph
defined by the tunnel 7(Xpq, I1(X14), tw)-

To check if a state s lies within a tunnel 7(Xnq, II(3i4), tw)
without precomputing the tunnel itself, the low dimensional
plan II(X;4) is first converted to a high dimensional plan
I (Xhd, Sstart, Sgoar) by mapping all states of I to their corre-
sponding states in H,, using the mapping function (s, ¥4, Xra)
as defined in Equation 4. Note that the resulting plan I may
have multiple possible trajectories from ss¢art t0 Sgoar due to
the 1 : n mapping of A\. Next, we define a distance measure
d(s,II(X)) which computes the distance of s from the path II(X).
During a planning iteration, a state is generated if and only if
d(s,II(Xhq)) < tw. This is achieved by redefining the succ(s)

and pred(s) to only consider states that lie in the tunnel. Further-
more, node expansion can be prioritized to states that are closer to
the path by modifying the heuristic function as shown in below.

ht(s, Sstart) - h(S, Ssta'rt) + |d(5,H(E))‘ (6)

Note that the heuristic h:(s, Sstart) is an estimate of the distance
from s to s5¢q+¢ Since we use a backward search from sgoq1 t0 Sstart
to accomodate start movement. For spatial domains 31, Y2, and
Y3, d(s, II(X)) is the perpendicular distance between s and the line
segment connecting the two nearest states in II(X). d(s,II(Z4))
will return a two-tuple value for spatial distance as well as temporal
distance.

TunnelChangeUpdate. When the tunnel changes, previously vis-
ited nodes that are no longer within the new tunnel are assigned
an infinite cost and the changes are propagated to their successors.
Also, their heuristic values are updated to reflect the new tunnel
distance using Equation 6, which re-prioritizes node expansion to
nodes that are closer to the new path. The tunnel width ¢,,is in-
versely proportional to the inflation factor e. Thus, a high € focuses
the search within a narrow tunnel, which is iteratively expanded
when ¢ is reduced to increase the breadth of the search. Due to the
extremely dynamic nature of the planning tasks, we find that a rea-
sonably narrow tunnel allows solutions to be returned very quickly
which can be improved, if time permits. If the tunnel is too narrow,
however, no plan maybe returned, requiring a replan in a wider tun-
nel. Appendix B, Alg 2 [22-30] provides the algorithmic details
to handle tunnel changes that are sent between planning tasks in
different domains.

Completeness and Optimality Guarantees. The use of tunnels
enables AD* to leverage plans across domains in order to expedite
searches in high-dimensional domains. However; by modifying the
definition of succ(s) and pred(s) to prune nodes that lie outside
the tunnel, we sacrifice the strict bounds on optimality provided by
AD#*, as nodes that lie outside the tunnel may lead to a more opti-
mal solution. By iteratively expanding the tunnel width ¢,,, when
the search is unsuccessful, we ensure that a solution will be found,
if one exists. For practical purposes, we find that a constantly dy-
namic world mitigates the need for strict optimality bounds as solu-
tions are constantly invalidated, before their use. In our experiments
(Section 7.1), we find that the computational benefit of using tun-
nels far outweighs its drawbacks, providing an exponential reduc-
tion in the nodes expanded, while still producing reasonable quality
solutions.

7 Results

7.1 Comparative Evaluation of Domain Relationships

We randomly generate 1000 scenarios of size 100m x 100m, with
random configurations of obstacles (both static and dynamic), start
state, and goal state and record the effective branching factor, num-
ber of nodes expanded, time to compute a plan, success rate, and
quality of the plans obtained. The effective branching factor is the
average number of successors that were generated over the course
of one search. Success rate is the ratio of the number of scenarios
for which a collision-free solution was obtained. Plan quality is the
ratio of the length of the static optimal path and the path obtained.
A plan quality of 1 indicates that the solution obtained was able
to minimize distance without any deviations. The aggregate met-
rics for the different domains and domain relationships are shown
in Table 1. Rows 3 and 6 in Table 1 include the added time to
compute plans in earlier domains for tunnel search, to provide an
absolute basis of comparison.

331 and ¥ can quickly generate solutions but is unable to solve
most of the scenarios as they don’t resolve fine-grained collisions.
The use of plans from X, accelerates searches in 32 (Table 1, Row
3). However, the real benefit of using both ¥; and ¥ is evident
when performing repeated searches across domains in large envi-
ronments when an initial plan IT(X;) accelerates repeated refine-
ments in X2 (and other subsequent domains). Using 33 in a large
environment takes significantly longer to produce similar paths. >4
is unable to find a complete solution for large-scale problem in-
stances (we limit maximum number of nodes expanded to 10%),
and the partial solutions often suffer from local minima, resulting
in a low success rate. The benefit of using tunnels is evident in
the dramatic reduction of the effective branching factor and nodes
expanded for X4.

When using the complete global path from X3 as a tunnel for ¥4
(Figure 4(a) and Row 6 in Table 1), the effective branching factor
reduces from 21.5 to 5.6, producing an exponential drop in node
expansion and computation time, and enabling complete solutions
to be generated in the space-time domain. This planning task is
able to successfully solve nearly 92% of the scenarios that were
generated. However, since Sstart and sgoq; are far apart, the large
depth of the search prevents this from being used at interactive rates
for many agents.

By using successive waypoints in II(X2) as Sstart and Sqoqr to cre-
ate a series of planning tasks in 33 and ¥4 (Figure 4(b) and Row 7
in Table 1), we reduce the breadth and depth of the search, allow-
ing solutions to be returned at a fraction of the time (6 ms), without
significantly affecting the success rate. The tradeoff is that indepen-
dent plans are generated between waypoints along the global path,
creating a two-level hierarchy between the domains.

Domain | BF | N | T | S | Q

T(Z1) 37 | 43 3 0.17 | 0.76
T(Z2) 46 | 85 8 023 | 057
T(22,I1(21)) 2.1 17 5 032 | 0.65
T(Z3) 74 | 187 18 | 0.68 | 0.73
T(Z4) 215 | 10* | 2487 | 034 | 0.26
T(24, (T3, T2, 51)) 56 | 765 | 136 | 092 | 0.64
ST (24, 11(83, 52, %1)) | 54 | 75 8 0.86 | 0.58

Table 1: Comparative evaluation of the domains, and the use of
multiple domains. BF = Effective branching factor. N = Average
number of nodes expanded. T = Average time to compute plan (ms).
S = Success rate of planner to produce collision-free trajectory. Q
= Plan quality. Row 6,7 corresponds to the domain relationships
illustrated in Figures 4(a) and (b) respectively.

Conclusion. The comparative evaluations of domains shows that
no single domain can efficiently solve the challenging problem in-
stances that were sampled. The use of tunnels significantly reduce
the effective branching factor of the search in X3 and X4, while
mapping successive waypoints in II(32) to multiple independent
planning tasks reduce the depth of the search in >3 and 3.4, without
significantly impacting success rate and quality. For the remaining
results in the paper, we adopt this domain relationship as it works
well for our application of simulating multiple goal-directed agents
in dynamic environments at interactive rates. Users may choose a
different relationship based on their specific needs.

7.2 Performance

We measure the performance of the framework by monitoring the
execution time of each task type, with multiple instances of plan-
ning tasks for 33 and >4. We limit the maximum deliberation time
tmae = 10 ms, which means that the total time executing any of the
tasks at each frame cannot exceed 10ms. For this experiment, we

limit the total number of tasks that can be executed in a single frame
to 2 (including To) to visualize the execution time of each task over
different frames. Figure 6 illustrates the task execution times of a
single agent over a 30 second simulation for the scenario shown in
Figure 2(a). The execution task To which is responsible for charac-
ter animation and simple steering takes approximately 0.4 — 0.5 ms
of execution time every frame. Spikes in the execution time corre-
late